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Abstract 

Multiple secondary data from geophysical measurements or expert interpretations are often 
available.  Geostatistical methods are capable of dealing with an arbitrarily large number of 
secondary data; however, building a licit probabilistic model of “redundancy and closeness” to 
the variables of interest is cumbersome.  It is desirable to merge multiple secondary data into a 
“super secondary” variable with a calculated correlation to the variable of interest.  This note 
describes one procedure to do this under a multivariate Gaussian model. 

Merging Secondary Data 

The integration of data in geostatistical modeling and simulation is necessary to obtain reasonable 
models of heterogeneity and estimates of uncertainty.  The information represented by secondary 
variables can help to better express trends in the primary variable.  Incorporating secondary data 
can prove difficult when several variables exist.  It would be advantageous to merge these into a 
single “super” variable, allowing conventional cokriging and cosimulation to be used. 

Ideally for this method the secondary variables should be uncorrelated to one another and highly 
correlated to the primary variable.  This situation would minimize the redundancy between the 
data.  For example, consider two secondary variables that each have a correlation ρ=0.6 to the 
primary variable. The best possible correlation of a super variable to the primary variable would 
be √(0.62+0.62)=0.686 if the secondary data were completely independent. If the two secondary 
variables were fully dependent then the correlation coefficient would remain at 0.6 due to the 
redundancy between the data they contain. 

For situations where the secondary data is not fully dependent or independent, the super variable 
can be found using a linear estimator: 
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where y* is the value of the super variable and λi is the weighting for each of the n variables, yi. It 
is useful to work with standardized variables so that the units do not cause confusion. 
Standardization in this case is achieved through the equation: 
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where zi is the value of variable i, mi is the mean, and σi is the standard deviation. This results in a 
variable yi with a mean of zero and a standard deviation of one. The original shape of the 
statistical distribution is maintained by equation (2). 
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Once the variables have been standardized, the weights can be found from an n-by-n system of 
normal equations: 
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These weights, once determined, can be used to find the estimate of the super variable from 
equation (1) and the estimation variance of the super variable: 
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Correlation with the primary variable will always be higher for the super variable than for any of 
the individual secondary variables. The correlation coefficient between the super variable and the 
primary variable to be estimated can be found from the equation: 
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Examples 

Suppose a data set has a primary variable and two secondary data sets. The secondary variables 
have a correlation coefficient of 0.610. Their correlations to the primary variable are 0.852 and 
0.778. The system of equations to be solved is 
 λ1 + 0.610 λ2 = 0.852 
 0.610 λ1 + λ2 = 0.778 

Solving for the estimator weights yields λ1=0.601 and λ2=0.411. The correlation of the resulting 
super variable and the primary variable is ρ=0.912. This is significantly higher than either of the 
individual secondary variables in addition to simplifying the estimation of the primary variable. 

As another example, suppose there are now three secondary variables to be merged. The 
correlation coefficients are given in Table 1. Note that variable 2 has a negative correlation to 
each of the other three. 

 
 1 2 3 Primary 

1 1 -0.5 0.6 0.65 
2 -0.5 1 -0.65 -0.7 
3 0.6 -0.65 1 0.7 

Primary 0.65 -0.7 0.7 1 

Table 1: Coefficients of correlation between all of the different variables for the second example. 

 

The weights for each variable are λ1=0.2962, λ2=-0.3678, and λ3=0.2832. λ2 is negative, which is 
to be expected because of the negative correlation to the other variables. The correlation between 
the merged super variable and the primary variable is ρ=0.805. The linear estimation variance is 
0.352. Correlation to the primary variable is once again significantly higher for the merged super 
variable than any of the secondary variables alone. 
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Real data was used to determine the weights for merging three secondary variables. The publicly-
available data set has four variables, using different units; for this example one was arbitrarily 
chosen as the primary variable. There are 67 data points contained in the file. To determine the 
correlation between the different data types, declustering weights were first found using the 
program declus. Next, all of the variables were plotted against one another using scatplt. 
The results from this are shown in Figure 1. Table 2 shows a summary of the coefficients of 
correlation. 

 
 1 2 3 Primary 

1 1 .526 .451 .463 
2 .526 1 .387 .680 
3 .451 .387 1 .422 

Primary .463 .680 .422 1 

Table 2: Coefficients of correlation between all of the different variables for the third example. 

 

Solving this problem gives weights of λ1=0.0907, λ2=0.5702, and λ3=0.1604. The coefficient of 
correlation between primary variable data and the merged super secondary variable is ρ=0.705. 
This is slightly better than the correlation between the primary variable and secondary variable 2. 
A scatterplot of the primary variable vs. the super variable is shown in Figure 2. Note that the 
primary and super variables have been back-transformed, which does not affect the correlation. 

Conclusions 

The use of a single merged secondary variable greatly simplifies estimation accounting for 
secondary data.  This could prove useful in a variety of cases, such as when many different metal 
types are present in ore or when numerous seismic data are available.  This secondary data must 
be accounted for somehow to properly estimate the resource in question.  The relative simplicity 
of simulating with only one secondary variable instead of many makes this technique attractive. 
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Figure 1: Scatterplots used to find the correlation between the different variables in the third 
example. 
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Figure 2: A scatterplot of the primary variable vs. the merged super secondary variable. 


