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Abstract

Multiple secondary data from geophysical measurements or expert interpretations are often
available. Geostatistical methods are capable of dealing with an arbitrarily large number of
secondary data; however, building a licit probabilistic model of “redundancy and closeness” to
the variables of interest is cumbersome. It is desirable to merge multiple secondary data into a
“super secondary” variable with a calculated correlation to the variable of interest. This note
describes one procedure to do this under a multivariate Gaussian model.

Merging Secondary Data

The integration of data in geostatistical modeling and simulation is necessary to obtain reasonable
models of heterogeneity and estimates of uncertainty. The information represented by secondary
variables can help to better express trends in the primary variable. Incorporating secondary data
can prove difficult when several variables exist. It would be advantageous to merge these into a
single “super” variable, allowing conventional cokriging and cosimulation to be used.

Ideally for this method the secondary variables should be uncorrelated to one another and highly
correlated to the primary variable. This situation would minimize the redundancy between the
data. For example, consider two secondary variables that each have a correlation p=0.6 to the
primary variable. The best possible correlation of a super variable to the primary variable would
be V(0.6*+0.6%)=0.686 if the secondary data were completely independent. If the two secondary
variables were fully dependent then the correlation coefficient would remain at 0.6 due to the
redundancy between the data they contain.

For situations where the secondary data is not fully dependent or independent, the super variable
can be found using a linear estimator:
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where y” is the value of the super variable and /; is the weighting for each of the n variables, y;. It
is useful to work with standardized variables so that the units do not cause confusion.
Standardization in this case is achieved through the equation:
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where z; is the value of variable i, m; is the mean, and o; is the standard deviation. This results in a
variable y; with a mean of zero and a standard deviation of one. The original shape of the
statistical distribution is maintained by equation (2).
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Once the variables have been standardized, the weights can be found from an n-by-n system of
normal equations:
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These weights, once determined, can be used to find the estimate of the super variable from
equation (1) and the estimation variance of the super variable:
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Correlation with the primary variable will always be higher for the super variable than for any of
the individual secondary variables. The correlation coefficient between the super variable and the
primary variable to be estimated can be found from the equation:

Py =]’ZI‘,/1[ "Pio (&)

Suppose a data set has a primary variable and two secondary data sets. The secondary variables
have a correlation coefficient of 0.610. Their correlations to the primary variable are 0.852 and
0.778. The system of equations to be solved is

A +0.610 A, =0.852

0.610 A; +X,=0.778

Examples

Solving for the estimator weights yields 1,=0.601 and 1,=0.411. The correlation of the resulting
super variable and the primary variable is p=0.912. This is significantly higher than either of the
individual secondary variables in addition to simplifying the estimation of the primary variable.

As another example, suppose there are now three secondary variables to be merged. The
correlation coefficients are given in Table 1. Note that variable 2 has a negative correlation to
each of the other three.

1 2 3 Primary
1 1 -0.5 0.6 0.65
2 -0.5 1 -0.65 -0.7
3 0.6 -0.65 1 0.7
Primary 0.65 -0.7 0.7 1

Table 1: Coefficients of correlation between all of the different variables for the second example.

The weights for each variable are A,=0.2962, 1,=-0.3678, and 1;=0.2832. 1, is negative, which is
to be expected because of the negative correlation to the other variables. The correlation between
the merged super variable and the primary variable is p=0.805. The linear estimation variance is
0.352. Correlation to the primary variable is once again significantly higher for the merged super
variable than any of the secondary variables alone.
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Real data was used to determine the weights for merging three secondary variables. The publicly-
available data set has four variables, using different units; for this example one was arbitrarily
chosen as the primary variable. There are 67 data points contained in the file. To determine the
correlation between the different data types, declustering weights were first found using the
program declus. Next, all of the variables were plotted against one another using scatplt.
The results from this are shown in Figure 1. Table 2 shows a summary of the coefficients of
correlation.

2 3 Primary
1 1 .526 451 463
2 .526 1 387 .680
3 451 .387 1 422
Primary 463 .680 422 1

Table 2: Coefficients of correlation between all of the different variables for the third example.

Solving this problem gives weights of 1,=0.0907, 1,=0.5702, and 4;=0.1604. The coefficient of
correlation between primary variable data and the merged super secondary variable is p=0.705.
This is slightly better than the correlation between the primary variable and secondary variable 2.
A scatterplot of the primary variable vs. the super variable is shown in Figure 2. Note that the
primary and super variables have been back-transformed, which does not affect the correlation.

Conclusions

The use of a single merged secondary variable greatly simplifies estimation accounting for
secondary data. This could prove useful in a variety of cases, such as when many different metal
types are present in ore or when numerous seismic data are available. This secondary data must
be accounted for somehow to properly estimate the resource in question. The relative simplicity
of simulating with only one secondary variable instead of many makes this technique attractive.
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Figure 1:
example.
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Scatterplots used to find the correlation between the different variables in the third
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Figure 2: A scatterplot of the primary variable vs. the merged super secondary variable.
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